[et_pb_section bb_built=โ1โณ][et_pb_row][et_pb_column type=โ4_4โณ][et_pb_text]
An astonishing one million Americans have Parkinsonโs disease, making it the second most common neurodegenerative disorder after Alzheimerโs. This impacts more people than those influenced with other movement disorders like ALS, muscular dystrophy or multiple sclerosis, combined. Characterized by involuntary tremors and debilitating chronic pain, movement disorders are incredibly painful. They impact an individualโs well-being, which makes it hard to interact socially, and the expensive drugs and/or medications can often plummet the patientโs circumstance.
ย
The problem is, thereโs no known cure for movement disorders. Worse, no one yet knows how to prevent them. Not only do people suffer from them, they also have to rely on treatment approaches with harsh side effects for the remainder of their lives. However, thereโs a new treatment in the forefront of movement disorder research, CBD oil. The results are nothing short of miraculous, reducing tremors and lessening pain. CBD is a abbreviation for cannabidiol oil. Created with an extraction process utilizing either the marijuana or hemp plant. Extracting the CBD provides the consumer the amazing medical benefits without the effects of THC. Because there are no psychedelic properties in CBD, studies have demonstrated it is completely safe for consumption. The purpose of the article below is to demonstrate as well as discuss cannabidiol as a promising strategy to treat and prevent movement disorders.
ย
Table of Contents
ย
ย
Movement disorders such as Parkinsonโs disease and dyskinesia are highly debilitating conditions linked to oxidative stress and neurodegeneration. When available, the pharmacological therapies for these disorders are still mainly symptomatic, do not benefit all patients and induce severe side effects. Cannabidiol is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory, and neuroprotective effects. Although the studies that investigate the effects of this compound on movement disorders are surprisingly few, cannabidiol emerges as a promising compound to treat and/or prevent them. Here, we review these clinical and pre-clinical studies and draw attention to the potential of cannabidiol in this field.
ย
Keywords: cannabidiol, movement disorders, Parkinsonโs disease, Huntingtonโs disease, dystonic disorders, cannabinoids
ย
ย
Cannabidiol (CBD) is one of the over 100 phytocannabinoids identified in Cannabis sativa (ElSohly and Gul, 2014), and constitutes up to 40% of the plantโs extract, being the second most abundant component (Grlic, 1976). CBD was first isolated from marijuana in 1940 by Adams et al. (1940) and its structure was elucidated in 1963 by Mechoulam and Shvo (1963). Ten years later, Perez-Reyes et al. (1973) reported that, unlike the main constituent of cannabis ฮ9-tetrahydrocannabinol (ฮ9-THC), CBD does not induce psychological effects, leading to the suggestion that CBD was an inactive drug. Nonetheless, subsequent studies demonstrated that CBD modulates the effects of ฮ9-THC and displays multiple actions in the central nervous system, including antiepileptic, anxiolytic and antipsychotic effects (Zuardi, 2008).
ย
Interestingly, CBD does not induce the cannabinoid tetrad, namely hypomotility, catalepsy, hypothermia, and antinociception. In fact, CBD mitigates the cataleptic effect of ฮ9-THC (El-Alfy et al., 2010). Clinical and pre-clinical studies have pointed to beneficial effects of CBD on the treatment of movement disorders. The first studies investigated CBDโs actions on dystonia, with encouraging results. More recently, the studies have been focusing on Parkinsonโs (PD) and Huntingtonโs (HD) diseases. The mechanisms whereby CBD exerts its effects are still not completely understood, mainly because several targets have been identified. Of note, CBD displays anti-inflammatory and antioxidant actions (Campos et al., 2016), and both inflammation and oxidative stress are linked to the pathogenesis of various movement disorders, such as PD (Farooqui and Farooqui, 2011; Niranjan, 2014), HD (Sรกnchez-Lรณpez et al., 2012), and tardive dyskinesia (Zhang et al., 2007).
ย
It is noteworthy that, when available, the pharmacological treatments for these movement disorders are mainly symptomatic and induce significant side effects (Connolly and Lang, 2014; Lerner et al., 2015; Dickey and La Spada, 2017). Nonetheless, despite its great clinical relevance, the studies evaluating CBDโs role on the pharmacotherapy of movement disorders are surprisingly few. Here, we will review the clinical and pre-clinical evidence and draw attention to the potential of CBD in this field.
ย
ย
CBD has several molecular targets, and new ones are currently being uncovered. CBD antagonizes the action of CB1 and CB2 receptors agonists, and is suggested to act as an inverse agonist of these receptors (Pertwee, 2008). Moreover, recent evidence point to CBD as a non-competitive negative allosteric modulator of CB1 and CB2 (Laprairie et al., 2015; Martรญnez-Pinilla et al., 2017). CBD is also an agonist of the vanilloid receptor TRPV1 (Bisogno et al., 2001), and the previous administration of a TRPV1 antagonist blocks some of CBD effects (Long et al., 2006; Hassan et al., 2014). In parallel, CBD inhibits the enzymatic hydrolysis and the uptake of the main endocannabinoid anandamide (Bisogno et al., 2001), an agonist of CB1, CB2 and TRPV1 receptors (Pertwee and Ross, 2002; Ross, 2003). The increase in anandamide levels induced by CBD seems to mediate some of its effects (Leweke et al., 2012). Moreover, in some behavioral paradigms the administration of an inhibitor of anandamide metabolism promotes effects similar to CBD (Pedrazzi et al., 2015; Stern et al., 2017).
ย
CBD has also been shown to facilitate the neurotransmission mediated by the serotonin receptor 5-HT1A. It was initially suggested that CBD would act as an agonist of 5-HT1A (Russo et al., 2005), but the latest reports propose that this interaction might be allosteric or through an indirect mechanism (Rock et al., 2012). Although this interaction is not fully elucidated, multiple CBDโs effects were reported to depend on 5-HT1A activation (Espejo-Porras et al., 2013; Gomes et al., 2013; Pazos et al., 2013; Hind et al., 2016; Sartim et al., 2016; Lee et al., 2017).
ย
The peroxisome proliferator-activated receptor ฮณ (PPARฮณ) is a nuclear receptor involved in glucose metabolism and lipid storage, and PPARฮณ ligands have been reported to display anti-inflammatory actions (OโSullivan et al., 2009). Data show that CBD can activate this receptor (OโSullivan et al., 2009), and some of CBD effects are blocked by PPARฮณ antagonists (Esposito et al., 2011; Dos-Santos-Pereira et al., 2016; Hind et al., 2016). CBD also up-regulates PPARฮณ in a mice model of multiple sclerosis, an effect suggested to mediate the CBDโs anti-inflammatory actions (Giacoppo et al., 2017b). In a rat model of Alzheimerโs disease, CBD, through interaction with PPARฮณ, stimulates hippocampal neurogenesis, inhibits reactive gliosis, induces a decline in pro-inflammatory molecules, and consequently inhibits neurodegeneration (Esposito et al., 2011). Moreover, in an in vitro model of the blood-brain barrier, CBD reduces the ischemia-induced increased permeability and VCAM-1 levelsโboth effects are attenuated by PPARฮณ antagonism (Hind et al., 2016).
ย
CBD also antagonizes the G-protein-coupled receptor GPR55 (Ryberg et al., 2007). GPR55 has been suggested as a novel cannabinoid receptor (Ryberg et al., 2007), but this classification is controversial (Ross, 2009). Currently, the phospholipid lysophosphatidylinositol (LPI) is considered the GPR55 endogenous ligand (Morales and Reggio, 2017). Although only few studies link the CBD effect to its action on GPR55 (Kaplan et al., 2017), it is noteworthy that GPR55 has been associated with PD in an animal model (Celorrio et al., 2017) and with axon growth in vitro (Cherif et al., 2015).
ย
More recently, CBD was reported to act as inverse agonist of the G-protein-coupled orphan receptors GPR3, GPR6, and GPR12 (Brown et al., 2017; Laun and Song, 2017). GPR6 has been implicated in both HD and PD. Concerning animal models of PD, GPR6 deficiency was related to both diminished dyskinesia after 6-OHDA lesion (Oeckl et al., 2014), and increased sensitivity to MPTP neurotoxicity (Oeckl and Ferger, 2016). Moreover, Hodges et al. (2006) described decreased expression of GPR6 in brain of HD patients, compared to control. GPR3 is suggested as a biomarker for the prognosis of multiple sclerosis (Hecker et al., 2011). In addition, GPR3, GPR6, and GPR12 have been implicated in cell survival and neurite outgrow (Morales et al., 2018).
ย
CBD has also been reported to act on mitochondria. Chronic and acute CBD administration increases the activity of mitochondrial complexes (I, II, II-III, and IV), and of creatine kinase in the brain of rats (Valvassori et al., 2013). In a rodent model of iron overloadโthat induces pathological changes that resemble neurodegenerative disordersโCBD reverses the iron-induced epigenetic modification of mitochondrial DNA and the reduction of succinate dehydrogenaseโs activity (da Silva et al., 2018). Of note, multiple studies associate mitochondrial dysfunctions with the pathophysiology of PD (Ammal Kaidery and Thomas, 2018).
ย
In parallel, several studies show anti-inflammatory and antioxidant actions of CBD (Campos et al., 2016). CBD treatment decreases the levels of the pro-inflammatory cytokines IL-1ฮฒ, TNF-ฮฑ, IFN-ฮฒ, IFN-ฮณ, IL-17, and IL-6 (Watzl et al., 1991; Weiss et al., 2006; Esposito et al., 2007, 2011; Kozela et al., 2010; Chen et al., 2016; Rajan et al., 2016; Giacoppo et al., 2017b), and increases the levels of the anti-inflammatory cytokines IL-4 and IL-10 (Weiss et al., 2006; Rajan et al., 2016). In addition, it inhibits the expression of iNOS (Esposito et al., 2007; Pan et al., 2009; Chen et al., 2016; Rajan et al., 2016) and COX-2 (Chen et al., 2016) induced by distinct mechanisms. CBD also displays antioxidant properties, being able to donate electrons under a variable voltage potential and to prevent the hydroperoxide-induced oxidative damage (Hampson et al., 1998). In rodent models of PD and HD, CBD up-regulates the mRNA levels of the antioxidant enzyme superoxide dismutase (Garcia-Arencibia et al., 2007; Sagredo et al., 2007). In accordance, CBD decreases oxidative parameters in in vitro models of neurotoxicity (Hampson et al., 1998; Iuvone et al., 2004; Mecha et al., 2012). Of note, the anti-inflammatory and antioxidant effects of CBD on lipopolysaccharide-stimulated murine macrophages are suppressed by a TRPV1 antagonist (Rajan et al., 2016). It has also been shown that CBD can affect the expression of several genes involved in zinc homeostasis, which is suggested to be linked to its anti-inflammatory and antioxidant actions (Juknat et al., 2012).
ย
CBDโs mechanisms of action are summarized in Figure โ1.
ย
ย
ย
PD is among the most common neurodegenerative disorders, with a prevalence that increases with age, affecting 1% of the population over 60 years old (Tysnes and Storstein, 2017). The disease is characterized by motor impairment (hypokinesia, tremors, muscle rigidity) and non-motor symptoms (e.g., sleep disturbances, cognitive deficits, anxiety, depression, psychotic symptoms) (Klockgether, 2004).
ย
The pathophysiology of PD is mainly associated with the loss of midbrain dopaminergic neurons in the substantia nigra pars compacta (SNpc), with consequent reduced levels of dopamine in the striatum (Dauer and Przedborski, 2003). When the motor symptoms appear, about 60% of dopaminergic neurons is already lost (Dauer and Przedborski, 2003), hindering a possible early diagnosis. The most effective and used treatment for PD is L-DOPA, a precursor of dopamine that promotes an increase in the level of dopamine in the striatum, improving the motor symptoms (Connolly and Lang, 2014). However, after a long-term treatment the effect of L-DOPA can be unstable, presenting fluctuations in symptoms improvement (on / off effect) (Jankovic, 2005; Connolly and Lang, 2014). In addition, involuntary movements (namely L-DOPA-induced dyskinesia) appear in approximately 50% of the patients (Jankovic, 2005).
ย
The first study with CBD on PD patients aimed to verify CBDโs effects on the psychotic symptoms. Treatment with CBD for 4 weeks decreased the psychotic symptoms, evaluated by the Brief Psychiatric Rating Scale and the Parkinson Psychosis Questionnaire, without worsening the motor function or inducing adverse effects (Zuardi et al., 2009). Later, in a case series with four PD patients, it was verified that CBD is able to reduce the frequency of the events related to REM sleep behavior disorder (Chagas et al., 2014a). In addition, although not ameliorating PD patientsโ motor function or their general symptoms score, treatment with CBD for 6 weeks improves PDโs patients quality of life (Chagas et al., 2014b). The authors suggest that this effect might be related to CBDโs anxiolytic, antidepressant and antipsychotic properties (Chagas et al., 2014b).
ย
Although the studies with patients with PD report beneficial effects of CBD only on the non-motor symptoms, CBD has been shown to prevent and/or reverse increased catalepsy behavior in rodents. When administered before the cataleptic agents haloperidol (antipsychotic drug), L-nitro-N-arginine (non-selective inhibitor of nitric oxide synthase) or WIN 55-212,2 (agonist of cannabinoid receptors), CBD hinders the cataleptic behavior in a dose-dependent manner (Gomes et al., 2013). A possible role of the activation of serotonin receptors 5-HT1A in this action has been proposed, because this effect of CBD is blocked by the pre-treatment with the 5-HT1A antagonist WAY100635 (Gomes et al., 2013). In accordance, Sonego et al. (2016) showed that CBD diminishes the haloperidol-induced catalepsy and c-Fos protein expression in the dorsal striatum, also by a mechanism dependent on 5-HT1A activation. Moreover, CBD prevents the increased catalepsy behavior induced by repeated administration of reserpine (Peres et al., 2016).
ย
In addition, pre-clinical studies in animal models of PD have shown neuroprotective effects of CBD. The unilateral injection of the toxin 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle promotes neurodegeneration of nigrostriatal dopaminergic neurons, being used to model PD (Bovรฉ et al., 2005). When inside the cell, the neurotoxin 6-OHDA oxidizes in hydrogen peroxide and paraquinone, causing death mainly of catecolaminergic neurons (Breese and Traylor, 1971; Bovรฉ et al., 2005). This neurodegeneration leads to depletion of dopamine and decrease in tyrosine hydroxylase activity in caudate-putamen (Bovรฉ et al., 2005; Lastres-Becker et al., 2005). Treatment with CBD during the 2 weeks following 6-OHDA administration prevents these effects (Lastres-Becker et al., 2005). In another study, it was observed that CBDโs protective effects after 6-OHDA injury are accompanied by elevation of mRNA levels of the antioxidant enzyme Cu,Zn-superoxide dismutase in substantia nigra (Garcia-Arencibia et al., 2007). The protective effects of CBD in this model do not seem to depend on the activation of CB1 receptors (Garcia-Arencibia et al., 2007). In addition to preventing the loss of dopaminergic neuronsโassessed by tyrosine hydroxylase immunostaining โ, the administration of CBD after 6-OHDA injury attenuates the activation of microglia in substantia nigra (Garcia et al., 2011).
ย
In an in vitro study, CBD increased the viability of cells treated with the neurotoxin N-methyl-4-phenylpyrimidine (MPP+), and prevented the MPP+-induced increase in caspase-3 activation and decrease in levels of nerve growth factor (NGF) (Santos et al., 2015). CBD treatment was also able to induce cell differentiation even in the presence of MPP+, an effect that depends on trkA receptors (Santos et al., 2015). MPP+ is a product of oxidation of MPTP that inhibits complex I of the respiratory chain in dopaminergic neurons, causing a rapid neuronal death (Schapira et al., 1990; Meredith et al., 2008).
ย
Data from clinical and pre-clinical studies are summarized in Tables โ1, โ2, respectively.
ย
ย
ย
ย
HD is a fatal progressive neurodegenerative disease characterized by motor dysfunctions, cognitive loss and psychiatric manifestations (McColgan and Tabrizi, 2018). HD is caused by the inclusion of trinucleotides (CAG) in the exons of the huntingtin gene, on chromosome 4 (MacDonald et al., 1993; McColgan and Tabrizi, 2018), and its prevalence is 1โ10,000 (McColgan and Tabrizi, 2018). Neurodegeneration in HD affects mainly the striatal region (caudate and putamen) and this neuronal loss is responsible for the motor symptoms (McColgan and Tabrizi, 2018). Cortical degeneration is seen in later stages, and huntingtin inclusions are seen in few cells, but in all patients with HD (Crook and Housman, 2011). The diagnosis of HD is based on motor signs accompanied by genetic evidence, which is positive genetic test for the expansion of the huntingtin gene or family history (Mason and Barker, 2016; McColgan and Tabrizi, 2018).
ย
The pharmacotherapy of HD is still directed toward the symptomatic relief of the disease, i.e., the motor disorders believed to be due to dopaminergic hyperactivity. This treatment is often conducted with typical and atypical antipsychotics, but in some cases the use of dopaminergic agonists is needed (Mason and Barker, 2016; McColgan and Tabrizi, 2018). Indeed, the role of dopamine in HD is not fully elucidated yet. Regarding the cognitive deficits, none of the investigated drugs was able to promote improvements (Mason and Barker, 2016; McColgan and Tabrizi, 2018).
ย
Recently, there has been a growing number of studies aiming to verify the therapeutic potential of cannabinoid compounds in the treatment of HD, mainly because some cannabinoids present hypokinetic characteristics (Lastres-Becker et al., 2002). In a controlled clinical trial, patients with HD were treated with CBD for 6 weeks. There was no significant reduction in the chorea indicators, but no toxicity was observed (Consroe et al., 1991).
ย
The protective effects of CBD and other cannabinoids were also evaluated in a cell culture model of HD, with cells expressing mutated huntingtin. In this model, the induction of huntingtin promotes rapid and extensive cell death (Aiken et al., 2004). CBD and the other three cannabinoid compounds testedโฮ8-THC, ฮ9-THC, and cannabinolโshow 51โ84% protection against the huntingtin-induced cell death (Aiken et al., 2004). These effects seem to be independent of CB1 activation, since absence of CB1 receptors has been reported in PC12, the cell line used (Molderings et al., 2002). The authors suggest that the cannabinoids exert this protective effect by antioxidant mechanisms (Aiken et al., 2004).
ย
Regarding studies with animal models, treatment with 3-nitropropionic acid (3-NP), an inhibitor of complex II of the respiratory chain, induces striatal damageโmainly by calpain activation and oxidative injury โ, being suggested as relevant to study HD (Brouillet et al., 2005). Sub-chronic administration of 3-NP in rats reduces GABA contents and the levels of mRNA for several markers of striatal GABAergic neurons projections (Sagredo et al., 2007). In addition, 3-NP diminishes the levels of mRNA for the antioxidant enzymes superoxide dismutase-1 (SOD-1) and -2 (SOD-2) (Sagredo et al., 2007). The administration of CBD reverses or attenuates these 3-NP-induced alterations (Sagredo et al., 2007). CBDโs neuroprotective effects are not blocked by the administration of antagonists of the CB1, TRPV1 or A2A receptors (Sagredo et al., 2007).
ย
More recently, clinical and pre-clinical HD studies started to investigate the effects of Sativexยฎ (CBD in combination with ฮ9-THC in an approximately 1:1 ratio). In accordance with what previously seen with CBD alone, Sativex administration attenuates all the 3-NP induced neurochemical, histological and molecular alterations (Sagredo et al., 2011). These effects do not seem to be linked to activation of CB1 or CB2 receptors (Sagredo et al., 2011). Authors also observed a protective effect of Sativex in reducing the increased expression of iNOS gene induced by malonate (Sagredo et al., 2011). Malonate administration leads to striatal damage by apoptosis and inflammatory events related to glial activation, being used as an acute model for HD (Sagredo et al., 2011; Valdeolivas et al., 2012).
ย
In a subsequent study, it was observed that the administration of a Sativex-like combination attenuates all the malonate-induced alterations, namely: increased edema, decreased number of surviving cells, enhanced number of degenerating cells, strong glial activation, and increased expression of inflammatory markers (iNOS and IGF-1) (Valdeolivas et al., 2012). Although the beneficial effects of Sativex on cell survival are blocked by both CB1 or CB2 antagonists, CB2 receptors seem to have a greater role in the protective effect observed (Valdeolivas et al., 2012).
ย
The beneficial effects of Sativex have also been described in the R6/2 mice, a transgenic model of HD. Treatment with a Sativex-like combination, although not reversing animalโs deterioration in rotarod performance, attenuates the elevated clasping behavior, that reflects dystonia (Valdeolivas et al., 2017). Moreover, treatment mitigates R6/2 mice reduced metabolic activity in basal ganglia and some of the alterations in markers of brain integrity (Valdeolivas et al., 2017).
ย
In spite of the pre-clinical encouraging results with Sativex, a pilot trial with 25 HD patients treated with Sativex for 12 weeks failed to detect improvement in symptoms or molecular changes on biomarkers (Lรณpez-Sendรณn Moreno et al., 2016). Nonetheless, Sativex did not induce severe adverse effects or clinical worsening (Lรณpez-Sendรณn Moreno et al., 2016). The authors suggest that future studies, with higher doses and/or longer treatment periods, are in need. More recently, one study described the results of administering cannabinoid drugs to 7 patients (2 of them were treated with Sativex; the others received dronabinol or nabilone, agonists of the cannabinoid receptors): patients displayed improvement on UHDRS motor score and dystonia subscore (Saft et al., 2018).
ย
Tables โ1, โ2 summarize data from clinical and pre-clinical studies, respectively.
ย
Dr. Alex Jimenezโs Insight
Involuntary muscle spasms, tremors and jerking are all uncontrollable movements known as dyskinesia, which are the most common symptoms of a variety of movement disorders. Movement disorders often have no known cause and these are considered to have no cure. As a result, individuals with these debilitating conditions have to turn to drugs and/or medications to keep their symptoms under control for the rest of their lives. However, several research studies have been conducted to determine the effectiveness of CBD, or cannabidiol, for the treatment and prevention of movement disorders. In one study, CBD was found to decrease pain and reduce inflammation in patients with Parkinsonโs disease without the psychoactive effects of THC. Moreover, healthcare professionals and researchers alike are trying to demonstrate further health benefits of CBD on movement disorders.
ย
ย
Dystonias are the result of abnormal muscles tone, causing involuntary muscle contraction, and resulting in repetitive movements or abnormal posture (Breakefield et al., 2008). Dystonias can be primary, for instance paroxysmal dyskinesia, or secondary to other conditions or drug use, such as tardive dyskinesia after prolonged treatment with antipsychotic drugs (Breakefield et al., 2008).
ย
Consroe et al. (1986) were the first to evaluate the effects of CBD alone in movement disorders. In this open label study, the five patients with dystonic movement disorders displayed 20โ50% improvement of dystonic symptoms when treated with CBD for 6 weeks. Of note, two patients with simultaneous PDโs signs showed worsening of their hypokinesia and/or resting tremor when receiving the higher doses of CBD. However, it should be noted that in two more recent studies with PD patients no worsening of motor function was seen (Zuardi et al., 2009; Chagas et al., 2014b). In accordance, Sandyk et al. (1986) reported improvement of dystonic symptoms in two patientsโone with idiopathic spasmodic torticollis and one with generalized torsion dystoniaโafter acute treatment with CBD.
ย
The effects of CBD on dystonic movements were also evaluated in pre-clinical studies. In a hamster model of idiopathic paroxysmal dystonia, the higher dose of CBD showed a trend to delay the progression of dystonia (Richter and Loscher, 2002). In addition, CBD prevents the increase in vacuous chewing movements, i.e., dyskinesia, promoted by repeated administration of reserpine (Peres et al., 2016). CBDโs beneficial effects are also seen in L-DOPA-induced dyskinesia in rodents, but only when CBD is administered with capsazepine, an antagonist of TRPV1 receptors (Dos-Santos-Pereira et al., 2016). These effects seem to depend on CB1 and PPARฮณ receptors (Dos-Santos-Pereira et al., 2016). In addition, treatment with capsazepine and CBD decreases the expression of inflammatory markers, reinforcing the suggestion that the anti-inflammatory actions of CBD may be beneficial to the treatment of dyskinesia (Dos-Santos-Pereira et al., 2016).
ย
Moreover, Sativex has been used in the treatment of spasticity in multiple sclerosis. Spasticity is a symptom that affects up to 80% of patients with multiple sclerosis and is associated with poorer quality of life (Flachenecker et al., 2014). A significant portion of patients does not respond to the conventional anti-spasmodic therapies, and some strategies are invasive, posing risks of complications (Flachenecker et al., 2014; Crabtree-Hartman, 2018). Recent data point to Sativex as a valid and well-tolerated therapeutic option. Sativex is able to treat the spasms, improving the quality of life, and displays a low incidence of adverse effects (Giacoppo et al., 2017a).
ย
Data from clinical and pre-clinical studies are summarized in Tables โ1, 2, respectively.
ย
ย
One important concern is whether CBD is a safe therapeutic strategy. Several preclinical and clinical reports show that CBD does not alter metabolic and physiological parameters, such as glycemia, prolactin levels, blood pressure, and heart rate. In addition, CBD does not modify hematocrit, leukocyte and erythrocyte counts, and blood levels of bilirubin and creatinine in humans. CBD also does not affect urine osmolarity, pH, albumin levels, and leukocyte and erythrocyte counts. Moreover, in vitro studies demonstrate that CBD does not alter embryonic development nor the vitality of non-tumor cell lines. The most reported side effects of CBD are tiredness, diarrhea, and changes on appetite. CBD does not seem to induce tolerance. For a broad review of CBDโs side effects, see Bergamaschi et al. (2011) and Iffland and Grotenhermen (2017).
ย
In the context of movement disorders with concomitant cognitive symptoms, as the ones discussed here, it is crucial to evaluate the potential motor and cognitive side effects of CBD. CBD does not induce catalepsy behavior in rodentsโbeing even able to attenuate the effects of several cataleptic agents, as discussed above (El-Alfy et al., 2010; Gomes et al., 2013; Peres et al., 2016; Sonego et al., 2016). In accordance, CBD does not induce extrapyramidal effects in humans (Leweke et al., 2012).
ย
With respect to cognitive effects, studies report that CBD does not impair cognition, being even able to improve it in some conditions. Pre-clinical data show that CBD restores the deficit in the novel object recognition task in mice treated with MK-801 (a protocol used to model schizophrenia) (Gomes et al., 2015), in rats submitted to neonatal iron overload (Fagherazzi et al., 2012), in a transgenic mice model for Alzheimerโs disease (Cheng et al., 2014), and in a mice model for cerebral malaria (Campos et al., 2015). CBD also reverses impaired social recognition in a murine model for Alzheimerโs disease (Cheng et al., 2014) and restores the deficits in the Morris water mazeโa task that evaluates spatial learningโin rodent models for Alzheimerโs disease (Martรญn-Moreno et al., 2011), brain ischemia (Schiavon et al., 2014) and cerebral malaria (Campos et al., 2015). In addition, studies demonstrate that CBD per se does not modify animalsโ performance in cognitive tasks (Osborne et al., 2017; Myers et al., 2018) and does not induce withdrawal after prolonged treatment (Myers et al., 2018). In accordance, in one recent clinical trial using CBD as an adjunctive therapy for schizophrenia, CBD group displayed greater cognitive improvement (assessed by BACSโBrief Assessment of Cognition in Schizophrenia), although it fell short of significance (McGuire et al., 2018). CBD also improves facial emotion recognition in cannabis users (Hindocha et al., 2015).
ย
It is noteworthy that in some cases, particularly concerning multiple sclerosis and HD clinical studies, CBD per se does not seem to be beneficial. However, when CBD is administered with ฮ9-THC in a 1:1 ratio, therapeutic effects are observed. Therefore, it is also important to evaluate the interactions between CBD and ฮ9-THC as well as the adverse effects of this mixture. Multiple reports point to deleterious effects of ฮ9-THC on human cognition, mainly on memory and emotional processing (Colizzi and Bhattacharyya, 2017). On the other hand, studies reveal that CBD can counteract ฮ9-THC detrimental cognitive effects in rodents and monkeys (Wright et al., 2013; Jacobs et al., 2016; Murphy et al., 2017). Nonetheless, this protective effect depends on the doses, on the interval between CBD and ฮ9-THC administration, as well as on the behavioral paradigm used. In fact, some pre-clinical studies do not observe the protective effect of CBD against the ฮ9-THC cognitive effects (Wright et al., 2013; Jacobs et al., 2016) or even show that CBD may potentiate them (Hayakawa et al., 2008). Limited clinical evidence indicate that CBD does not worse ฮ9-THC cognitive effects and, depending on the dose, may protect against them (Colizzi and Bhattacharyya, 2017; Englund et al., 2017; Osborne et al., 2017). Multiple clinical studies with Sativex have not observed motor or cognitive adverse effects (Aragona et al., 2009; Rekand, 2014; Lรณpez-Sendรณn Moreno et al., 2016; Russo et al., 2016). Nevertheless, one recent open-label study compared multiple sclerosis patients who continued the treatment with Sativex to those who quitted and reported worse balance and decrease in cognitive performance in the continuers (Castelli et al., 2018). In line with these findings, in an observational study with a large population of Italian patients with multiple sclerosis, cognitive/psychiatric disturbances were seen in 3.9% of the cases (Patti et al., 2016).
ย
ย
The data reviewed here point to a protective role of CBD in the treatment and/or prevention of some movement disorders. Although the studies are scarce, CBD seems to be effective on treating dystonic movements, both primary and secondary. It is noteworthy that in some cases, particularly concerning multiple sclerosis and HD, the clinical beneficial effects are observed only when CBD is combined with ฮ9-THC in a 1:1 ratio (Sativex). In fact, these therapeutic effects are probably due to ฮ9-THC, since they are also seen with other cannabinoid agonists (Curtis et al., 2009; Nielsen et al., 2018; Saft et al., 2018). Nonetheless, CBD is shown to diminish the ฮ9-THC unwanted effects, such as sedation, memory impairments, and psychosis (Russo and Guy, 2006). Data regarding HD are scarce, but the results of using Sativex in multiple sclerosis are encouraging. Reviews of the clinical use of this compound in the last decade point to effectiveness in the treatment of spasticity as well as improvement in quality of life, with low incidence of adverse effects (Giacoppo et al., 2017a).
ย
In respect to PD, although the pre-clinical studies are promising, the few studies with patients failed to detect improvement of the motor symptoms after treatment with CBD. There is a significant difference between the clinical and pre-clinical PD studies. In animals, the beneficial effects are seen when CBD is administered prior to or immediately after the manipulation that induces the PD-like symptoms. Of note, when treatment with CBD commences 1 week after the lesion with 6-OHDA, the protective effects are not seen (Garcia-Arencibia et al., 2007). These data suggest that CBDโs might have a preventive role rather than a therapeutic one in PD. In clinical practice, PD is diagnosed subsequently to the emergence of motor symptomsโthat appear up to 10 years after the beginning of neurodegeneration and the onset of non-motor symptoms (Schrag et al., 2015). When the diagnosis occur, approximately 60% of the dopaminergic neurons has already been lost (Dauer and Przedborski, 2003). The fact that in clinical trials CBD is administered only after this substantial progression of the disease might explain the conflicting results. Unfortunately, the early diagnosis of PD remains a challenge, posing difficulty to the implementation of preventive strategies. The development of diagnosis criteria able to detect PD in early stages would probably expand the CBDโs applications in this disease.
ย
The molecular mechanisms associated with CBDโs improvement of motor disorders are likely multifaceted. Data show that it might depend on CBDโs actions on 5-HT1A, CB1, CB2, and/or PPARฮณ receptors. Moreover, all movement disorders are in some extent linked to oxidative stress and inflammation, and CBD has been reported to display an antioxidant and anti-inflammatory profile, in vitro and in animal models for movement abnormalities.
ย
The studies investigating the role of CBD on the treatment of movement disorders are few. Furthermore, differences in the dose and duration of treatment as well as in the stage of the disease (for instance, PD patients are treated only in an advanced stage of the disease) among these studies (shown in detail in Table โTable1)1) limit the generalization of the positive effect of CBD and might explain the conflicting results. Notwithstanding, the beneficial neuroprotective profile of CBD added to the preliminary results described here are encouraging. Undoubtedly, future investigations are needed to endorse these initial data and to elucidate the mechanisms involved in the preventive and/or therapeutic potential of CBD on movement disorders.
ย
ย
Since you read the article concerning the effects of cannabidiol on movement disorders, one thing will become quickly evident: cannabis has a profound influence on the human body. This one herb and its own variety of therapeutic chemicals seem to impact every aspect of the brain and body. However, how is this possible? Thereโs a system in the human body which many individuals are not aware of nor do they known how important itโs functions are: the endocannabinoid system.
ย
ย
The endogenous cannabinoid system, or the cannabinoid system, named after the plant that resulted in its discovery, is possibly the most important physiologic system involved in establishing and maintaining human health. Endocannabinoids and their receptors are found throughout the body: in the brain, organs, connective tissues, glands, and immune cells. In each tissue, the endocannabinoid system performs various tasks, but the goal is always the same: homeostasis, the maintenance of a stable internal environment despite changes in the external environment.
ย
Cannabinoids promote homeostasis at every level of biological lifetime, from the sub-cellular, into the organism, and possibly into the community and more. Here is one instance: autophagy, a process where a cell sequesters part of its contents to be self-digested and recycled, is mediated by the endocannabinoid system. While this procedure keeps normal cells alive, permitting them to maintain a balance between the synthesis, degradation, and subsequent recycling of cellular products, it has a fatal effect on cancerous tumor cells, causing them to consume themselves at a programmed cellular suicide. The death of cancer cells, of course, promotes homeostasis and survival in the level of the whole organism.
ย
Endocannabinoids and cannabinoids are also found at the intersection of the bodyโs various systems, enabling communication and coordination between distinct cell types. In the case of an injury, for instance, cannabinoids are available diminishing the discharge of activators and sensitizers in the injured tissue, stabilizing the nerve cell to stop excessive firing, and calming nearby immune cells to prevent discharge of pro-inflammatory substances. Three different mechanisms of action on three distinct cell types for one purpose: minimize the pain and damage caused by the injury.
ย
The endocannabinoid system, using its complicated activities in our immune system, nervous system, and all of the bodyโs organs, is literally a bridge between the brain and the body. By understanding this system we begin to observe a mechanism that explains the way the states of awareness can promote disease or health.
ย
Along with regulating the human bodyโs internal and cellular homeostasis, cannabinoids affect an individualโs connection with the external environment. Socially, the management of cannabinoids clearly changes human behavior, frequently promoting sharing, comedy, and imagination. By mediating neurogenesis, neuronal plasticity, and learning, cannabinoids may directly affect a personโs open-mindedness and capability to move beyond limiting patterns of thought and behaviour from past scenarios. Reformatting these older patterns is an essential part of health in our quickly changing environment. Furthermore, the article above found that CBD appears to be an effective treatment option for dystonic movements, both primary and secondary, although further reasearch studies are required. The research of CBD has been controversial, however, more and more studies are starting to demonstrate the health benefits of cannabidiol. Information referenced from the National Center for Biotechnology Information (NCBI).ย The scope of our information is limited to chiropractic as well as to spinal injuries and conditions. To discuss the subject matter, please feel free to ask Dr. Jimenez or contact us atย 915-850-0900ย .
ย
Curated by Dr. Alex Jimenez
Back pain is one of the most prevalent causes for disability and missed days at work worldwide. As a matter of fact, back pain has been attributed as the second most common reason for doctor office visits, outnumbered only by upper-respiratory infections. Approximately 80 percent of the population will experience some type of back pain at least once throughout their life. The spine is a complex structure made up of bones, joints, ligaments and muscles, among other soft tissues. Because of this, injuries and/or aggravated conditions, such as herniated discs, can eventually lead to symptoms of back pain. Sports injuries or automobile accident injuries are often the most frequent cause of back pain, however, sometimes the simplest of movements can have painful results. Fortunately, alternative treatment options, such as chiropractic care, can help ease back pain through the use of spinal adjustments and manual manipulations, ultimately improving pain relief.
ย
ย
ย
ย
ย
ย
ย
[/et_pb_text][et_pb_accordion _builder_version=โ3.10โณ][et_pb_accordion_item _builder_version=โ3.10โณ title=โBlankโ use_background_color_gradient=โoffโ background_color_gradient_start=โ#2b87daโ background_color_gradient_end=โ#29c4a9โณ background_color_gradient_type=โlinearโ background_color_gradient_direction=โ180degโ background_color_gradient_direction_radial=โcenterโ background_color_gradient_start_position=โ0%โ background_color_gradient_end_position=โ100%โ background_color_gradient_overlays_image=โoffโ parallax=โoffโ parallax_method=โonโ background_size=โcoverโ background_position=โcenterโ background_repeat=โno-repeatโ background_blend=โnormalโ allow_player_pause=โoffโ background_video_pause_outside_viewport=โonโ text_shadow_style=โnoneโ box_shadow_style=โnoneโ custom_css_main_element=โdisplay:none;โ /][et_pb_accordion_item _builder_version=โ3.10โณ title=โReferencesโ use_background_color_gradient=โoffโ background_color_gradient_start=โ#2b87daโ background_color_gradient_end=โ#29c4a9โณ background_color_gradient_type=โlinearโ background_color_gradient_direction=โ180degโ background_color_gradient_direction_radial=โcenterโ background_color_gradient_start_position=โ0%โ background_color_gradient_end_position=โ100%โ background_color_gradient_overlays_image=โoffโ parallax=โoffโ parallax_method=โonโ background_size=โcoverโ background_position=โcenterโ background_repeat=โno-repeatโ background_blend=โnormalโ allow_player_pause=โoffโ background_video_pause_outside_viewport=โonโ text_shadow_style=โnoneโ box_shadow_style=โnoneโ]
[/et_pb_accordion_item][et_pb_accordion_item _builder_version=โ3.10โณ title=โClose Accordionโ use_background_color_gradient=โoffโ background_color_gradient_start=โ#2b87daโ background_color_gradient_end=โ#29c4a9โณ background_color_gradient_type=โlinearโ background_color_gradient_direction=โ180degโ background_color_gradient_direction_radial=โcenterโ background_color_gradient_start_position=โ0%โ background_color_gradient_end_position=โ100%โ background_color_gradient_overlays_image=โoffโ parallax=โoffโ parallax_method=โonโ background_size=โcoverโ background_position=โcenterโ background_repeat=โno-repeatโ background_blend=โnormalโ allow_player_pause=โoffโ background_video_pause_outside_viewport=โonโ open_toggle_background_color=โ#ffffffโ closed_toggle_background_color=โ#ffffffโ text_shadow_style=โnoneโ custom_padding=โ0px|||โ custom_padding_tablet=โ0px|||โ custom_padding_phone=โ0px|||โ box_shadow_style=โnoneโ custom_css_main_element=โborder:none;โ custom_css_toggle_title=โfont-size:0.8em;โ custom_css_toggle_icon=โdisplay:none;โ /][/et_pb_accordion][/et_pb_column][/et_pb_row][/et_pb_section]
Professional Scope of Practice *
The information herein on "Cannabidiol for Treatment and Prevention of Movement Disorders" is not intended to replace a one-on-one relationship with a qualified health care professional or licensed physician and is not medical advice. We encourage you to make healthcare decisions based on your research and partnership with a qualified healthcare professional.
Blog Information & Scope Discussions
Our information scope is limited to Chiropractic, musculoskeletal, physical medicines, wellness, contributing etiological viscerosomatic disturbances within clinical presentations, associated somatovisceral reflex clinical dynamics, subluxation complexes, sensitive health issues, and/or functional medicine articles, topics, and discussions.
We provide and present clinical collaboration with specialists from various disciplines. Each specialist is governed by their professional scope of practice and their jurisdiction of licensure. We use functional health & wellness protocols to treat and support care for the injuries or disorders of the musculoskeletal system.
Our videos, posts, topics, subjects, and insights cover clinical matters, issues, and topics that relate to and directly or indirectly support our clinical scope of practice.*
Our office has reasonably attempted to provide supportive citations and has identified the relevant research study or studies supporting our posts. We provide copies of supporting research studies available to regulatory boards and the public upon request.
We understand that we cover matters that require an additional explanation of how it may assist in a particular care plan or treatment protocol; therefore, to further discuss the subject matter above, please feel free to ask Dr. Alex Jimenez, DC, or contact us at 915-850-0900.
We are here to help you and your family.
Blessings
Dr. Alex Jimenez DC, MSACP, RN*, CCST, IFMCP*, CIFM*, ATN*
email: coach@elpasofunctionalmedicine.com
Licensed as a Doctor of Chiropractic (DC) in Texas & New Mexico*
Texas DC License # TX5807, New Mexico DC License # NM-DC2182
Licensed as a Registered Nurse (RN*) in Florida
Florida License RN License # RN9617241 (Control No. 3558029)
License Compact Status: Multi-State License: Authorized to Practice in 40 States*
Presently Matriculated: ICHS: MSN* FNP (Family Nurse Practitioner Program)
Dr. Alex Jimenez DC, MSACP, RN* CIFM*, IFMCP*, ATN*, CCST
My Digital Business Card
For individuals trying to retrain their body movements for back health improvement, what is the… Read More
Can individuals with body pain incorporate Pilates to reduce general aches and pains while strengthening… Read More
Sleep is vital at all ages, but what is the amount of sleep for older… Read More
Can individuals dealing with joint pain incorporate turmeric as part of their treatment to reduce… Read More
Individuals who have been injured or ill or have a chronic disability may be having… Read More
Can individuals incorporate ways to increase their vitamin C levels to boost their immune system… Read More